Conditions for the existence of quasi-stationary distributions for birth-death processes with killing

نویسنده

  • Erik A. van Doorn
چکیده

We consider birth-death processes on the nonnegative integers, where {1, 2, . . . } is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 (killing) may occur from any state. Assuming that absorption at 0 is certain we are interested in additional conditions on the transition rates for the existence of a quasi-stationary distribution. Inspired by results of M. Kolb and D. Steinsaltz (Quasilimiting behaviour for one-dimensional diffusions with killing, Annals of Probability, 40 (2012) 162212) we show that a quasi-stationary distribution exists if the decay rate of the process is positive and exceeds at most finitely many killing rates. If the decay rate is positive and smaller than at most finitely many killing rates then a quasi-stationary distribution exists if and only if the process one obtains by setting all killing rates equal to zero is recurrent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birth-death Processes with Killing: Orthogonal Polynomials and Quasi-stationary Distributions

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to in...

متن کامل

Quasi-stationary Distributions for Birth-death Processes with Killing

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to in...

متن کامل

Existence of Non Trivial Quasi Stationary Distributions in the Birth and Death Chain

We study conditions for the existence of non trivial quasi stationary distributions for the birth and death chain with 0 as absorbing state. We reduce our problem to a continued fractions one that can be solved by using extensions of classical results of this theory. We also prove that there exist normalized quasi stationary distributions if and only if 0 is geometrically absorbing.

متن کامل

A Note on Quasi-stationary Distributions of Birth-death Processes and the Sis Logistic Epidemic

For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martinez and Picco [4] studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Φ on the space of probability distributions on {1, 2, . . .}. In the case of a birth-death process, one ca...

متن کامل

Quasi-Stationary Distributions For A Class Of Discrete-Time Markov Chains

This paper is concerned with the circumstances under which a discrete-time absorbing Markov chain has a quasi-stationary distribution. We showed in a previous paper that a pure birth-death process with an absorbing bottom state has a quasi-stationary distribution – actually an infinite family of quasi-stationary distributions – if and only if absorption is certain and the chain is geometrically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011